EPS boards are used as thermal insulation boards in the Dryvit Outsulation, Outsulation M, Outsulation SLK, Drysulation, Infinity Residential systems as well as prefabricated Metalite, Conventional and Federlite panels. They can also be used for the execution of architectural details. Please refer to the appropriate installation manuals in order to obtain more detailed information regarding installation.

TECHNICAL CHARACTERISTICS / DRYVIT REQUIREMENTS

In accordance with Plant Production Control systems, EPS board physical traits should meet or surpass PN-EN-13163:2004 for EPS type 70 boards and EPS 70-040 FASADA goods for PN-B-20132. Compliance to this standard should be confirmed by a declaration of manufacturer compliance. Additionally, a secondary – voluntary certificate of compliance may be issued by an authorised unit.

INSULATION PROPERTIES / SELECTION OF BOARD THICKNESS

In accordance with PN-B-20132, the heat transmission coefficient for a tightly laid EPS thermal insulation board layer should be $l = 0.040 \text{ W/(m}^2\text{K)}$ for EPS 70 - 040 FASADA products and $l = 0.036 \text{ W/(m}^2\text{K)}$ for EPS 80 - 036 FASADA products.

One must also bear in mind that the Minister of Infrastructure order foresees the calculation of heat insulation properties of external walls by means of calculating the seasonal demand for heat or through the calculation of a heat transmission coefficient U_i.

The schedule to the Minister of Infrastructure order states that: $U_i = U_c + DU$, where:
- U_c - heat transmission coefficient for complete barrier,
- DU - additional index expressing the influence of heat bridges.

In case of multi-layer walls:
- the minimum heat transmission coefficient for full walls is: $U = U_{c,\text{max}} - 0 = 0.30 \text{ W/(m}^2\text{K)}$,
- for walls with windows and doors, the minimum heat transmission coefficient is: $U = U_{c,\text{max}} - 0.05 = 0.25 \text{ W/(m}^2\text{K)}$.

The thickness of EPS boards used in Dryvit technology should be selected in a manner allowing for fulfilment of thermal protection requirements for buildings and should be between 20 and 250 mm thick (depending on applied system and thermal insulation of barrier).

The drawing below shows how insulation thickness impacts the heat transmission coefficient of single-layer walls, executed using generally available building materials, and insulated using Dryvit technology. The value of the heat transmission coefficient has been determined on the basis of PN-EN ISO 6946:1999.
The information provided above complies with specifications regarding Dryvit system installations and is presented in good faith. Dryvit shall not be held liable for design and contractor work. Please contact our company in order to ensure that you are making use of the most recently available information.